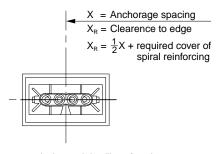
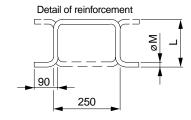

Bonded Slab Post-Tensioning



Stressing Anchorage VSL Type SO



For proper design and detailing of anchorage zones and related reinforcement, refer to the VSL Publication "Detailing for Post-Tensioning". The arrangement shown here is common for slabs in buildings.

Туре	Α	В	С	D	E	F	H ²	J	\mathbf{K}_{min}	L_{min}^{3}	M	N	Χ
6-4 ¹	13.00	6.62	11.25	4.90	3.00	5.00	K-1.2	3.00	4.75	1.5 x K	#4	#5	13.88

Other sizes available on request

For proper design and detailing of anchorage zones and related reinforcement, refer to the VSL Publication *Detailing for Post-Tensioning*.

Dimensions in inches.

Dimensions are valid for:

- Nominal concrete cylinder strength at 28 days: 4,000 psi (28 MPa).
- Maximum prestressing force may be applied when concrete reaches a cylinder strength of 80% of its nominal strength or 3,500 psi (24 MPa) whichever is less.

Subject to modification

- Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.
- Information for other concrete strengths and conditions are available from your local VSL Representative.
- 1) Anchorage may be used with 0.5" (12.7 mm) or 6" (15.2 mm) strand.
- 2) Use actual K when calculating H.
- 3) L shall be the maximum permitted by the slab thickness and cover, whereas $L_{\mbox{\tiny mm}}=1.5~x~\mbox{K}$.